Scientific.ru
Новости науки
24.05.01. Дополнительные пространственные измерения входят в моду

О том, что физики в последние годы "открыли" в привычном нам мире дополнительные пространственные измерения — "в нагрузку" к высоте, длине и ширине — слышали не только специалисты, но и люди, интересующиеся наукой постольку-поскольку (для введения в предмет читайте заметку Трехмерен ли наш мир?). Однако среди потока работ, посвященных свойствам мира с дополнительными пространственными измерениями, особняком стоит недавняя статья [N.Arkani-Hamed, A.G.Cohen, H.Georgi, Phys.Rev.Lett. 86, 4757 (2001)], предлагающая взглянуть на суть вещей под абсолютно новым углом зрения. Оказывается, в теории поля существует возможность динамически создавать, генерировать новые пространственные измерения. Эта работа демонстрирует, как в обычном четырехмерном пространстве-времени у частиц появляется дополнительная степень свободы, которая с полным правом может быть интерпретирована как еще одна пространственная координата.

Попытаемся пояснить суть дела. Начнем с формального построения, предложенного в статье. Рассмотрим мир с тремя пространственными и одним временным измерением, в котором существует не привычные нам сильное, слабое и электромагнитное взаимодействия (гравитацию пока оставим в стороне), а целый набор различных взаимодействий. А именно, пусть у нас будет N штук различных по своей природе взаимодействий, которые, тем не менее, математически похожи друг на друга (а именно, они описывается одной и той же группой калибровочной симметрии G; для конкретности авторы рассматривают группы SU(m)). Кроме того, пусть у нас существует и вещество — N штук "адронных" полей, причем каждое поле чувствует не все возможные типы взаимодействий, а только два (некий аналог: электроны, которые чувствуют электромагнитное и слабое взаимодействие, но не чувствуют сильного).
  physnews240501
Схематическая структура мира в рассматриваемой модели: имеется N калибровочных полей и N полей вещества, чувствительных только к паре взаимодействий.
 

В результате возникает "кольцевая диаграмма" теории, проиллюстрированная на Рисунке: N узлов диаграммы — это взаимодействия; N соединяющих их линий — это "адроны".

Оказывается, что эффективное действие (скалярный функционал, описывающий весь мир) в такой теории имеет интересную особенность: кроме обычного интеграла по 4 пространственно-временным измерениям имеется еще и суммирование по номеру взаимодействия от 1 до N. Именно на это суммирование авторы и обратили внимание. Они указывают на то, что именно такое эффективное действие возникает в пятимерных моделях (4 пространственных измерения плюс время), в которых одно пространственное измерение не непрерывно, а дискретно, что автоматически превращает интеграл в сумму.

Далее авторы задаются вопросом: насколько аналогия суммированием по типам взаимодействий и суммированием по дополнительной координате полезна и корректна? Развивая свои идеи, авторы находят подтверждения тому, что эта дополнительная степень свободы в самом деле может с полным правом называться еще одним пространственным измерением. В частности, в пределе N стремится к бесконечности новая координата становится непрерывной. При этом в конструкции возникает полная вращательная симметрия между всеми четырьмя пространственными измерениями. Например, связь энергии частицы с импульсом имеет вид E2 = p2 + p52, где p есть обычный трехмерный импульс, а p5 — некий квазиимпульс, естественным образом появляющийся в задаче (полный аналог того квазиимпульса, который возникает при квантово-механическом рассмотрении N потенциальных ям, свернутых в кольцо, как показано на Рисунке). Кроме того, если рассмотреть потенциал между двумя частицами как функцию расстояния, то он в этой модели принимает вид 1/r2 (а не 1/r, как в трехмерном мире), что также говорит о реальности, физичности нового измерения.

Итак, аккуратно сформулируем физическую идею находки. Дополнительные пространственные измерения не обязательно вводить в теорию руками, как это делалось до сих пор. Как показано в этой статье, они, в принципе, могут получаться динамически. Разумеется, для этого требуется определенный, достаточно экзотический набор физических полей и взаимодействий, которого, по-видимому, нет в нашем конкретном мире. Тем не менее, говорить, что эти идеи к нашему миру не имеют никакого отношения, пока преждевременно. В самом деле, а вдруг окажется, что одно (несколько? все?) из наших привычных пространственных измерений "сгенерированы" вот таким же образом, динамически, на каком-нибудь глубоком и пока нам недоступном уровне?!

Как именно эти идеи можно применить к нашему миру, покажет будущее. Однако стоит отметить, что статья действительно привносит совершенно свежую струю идей в гипотезу дополнительных пространственных измерений.

Игорь Иванов


На главную страницу